
Introduction to Smart Contract Security

Yajin Zhou (http://yajin.org)

Zhejiang University

Credits: Campbell R. Harvey, Ashwin Ramachandran, Brent Xu, Anastasia Mavridou, Aron Laszka, KC Tam

http://yajin.org

About Me

• Professor at Zhejiang University since 2018, earned my PhD from NC
State (2015)

• Published 10 papers in top 4 system security conferences (USENIX
Security, CCS, NDSS and Oakland), with 5700+ citations (Google
Scholar).

• Four best paper awards, including IEEE EuroS&P 2019

• Identify real-world threats (how to hack) and build practical solutions
(how to defend), in the context of software security of embedded
systems (firmware)

• Also interested in emerging threats, e.g., security of smart contracts

• http://yajin.org

http://yajin.org/

Agenda

• Ethereum

• Accounts

• Transactions

• Smart contracts

• EVM

• How to deploy a smart contract

• How to invoke functions inside a smart contract

• Security of smart contracts in real world

Ethereum

Ethereum

It’s more than

cryptocurrency.

Pic: https://www.ethereum.org/

Basic Concepts

• Ethereum node

• Ethereum

• Accounts (Two types) and Wallets

• Transactions

• Smart Contracts

• Solidity: Language used for smart contract development

Ethereum Node

• Full node: Validate all transactions and new blocks

• Operate in a P2P fashion

• Each contains a copy of the entire Blockchain

• Light clients - store only block headers

• Provide easy verification through tree data structure

• Don’t execute transactions, used primarily for balance validation

• Implemented in a variety of languages (Go, Rust, etc.)

Accounts and Wallets

• Accounts:

• Two Kinds:

• External Owned Accounts - (EOA): owned by person

• Contract Accounts: owned by code

• Allow for interaction with the blockchain

• Wallets:

• A set of one or more external accounts

• Used to store/transfer Ether

Accounts and Wallets

• External Account (EOA, Valid Ethereum Address)

• Consist of a public/private key-pair

• Can have a balance

• Has an associated nonce (amount of transactions sent from the

account) and a balance

• codeHash - Hash of associated account code, i.e. a computer

program for a smart contract (hash of an empty string for external

accounts, EOAs)

Accounts and Wallets

• Contract Account: Ethereum account that can store and

execute code

• Has an associated nonce and balance

• codeHash - hash of associated account code

• storageRoot contains Merkle tree of associated storage data

Examples

Transactions

• A request to modify the state of the blockchain

• Can run code (contracts) which changes global state

(storage)

• Launched by an EOA (external transaction) or Contract account

(internal transaction)

• Types

• Fund transfer between EOAs

• Deploy a contract on Ethereum network (discuss later)

• Execute a function on a deployed contract (discuss later)

Transactions: Fund Transfer Between EOA

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Transactions: Fund Transfer Between EOA

• A real example

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Smart Contracts

• Function like an external account

• Hold funds

• Can interact with other accounts and smart contracts

• Contain code

• Can be called through transactions

Code Execution

• Every Ethereum node contains a virtual machine (similar to Java)

• Called the Ethereum Virtual Machine (EVM)

• Compiles code from high-level language to bytecode

• Executes smart contract code and changes (and broadcasts)

global states

• Every full-node on the blockchain processes every transaction

and stores the entire state

• What’s the problem here: consumes resources but gets nothing!

Gas

• Halting problem (infinite loop - consume resources) – reason for

Gas

• Problem: Cannot tell whether or not a program will run infinitely

from compiled code - why?

• Solution: charge fee per computational step to limit infinite loops

and stop flawed code from executing

• Every transaction needs to specify an estimate of the amount of

gas it will spend - gas Limit

• Essentially a measure of how much one is willing to spend on a

transaction, even if buggy

Gas Cost

• Gas Price: current market price of a unit of Gas (in Wei)

• Check gas price here: https://ethgasstation.info/

• Is always set before a transaction by user

• Gas Limit: maximum amount of Gas user is willing to spend

• Gas Cost (used when sending transactions) is calculated by gas used*gasPrice

• Gas used

• normal transaction - 21,000

• smart contracts: depends on resources consumed - instructions executed and

storage used

• What if gas limit < gas cost?

Gas Cost

Quick quiz: who will get the transaction fee?

A Normal Transaction
Gas Limit: Maximum amount of gas that a user will pay

for this transaction. The default amount for a standard

ETH transfer is 21,000 gas

Gas Used by Txn: Actual amount of gas used to

execute the transaction. Since this is a standard

transfer, the gas used is also 21,000

Gas Price: Amount of ETH a user is prepared to pay for

each unit of gas. The user chose to pay 8 Gwei for every

gas unit, which is considered a “high priority” transaction

and would be executed very fast.

Eth Gas Station

Miner

• Miner is responsible for creating new blocks and packing

transactions

• They are rewarded by the network, and transaction fee

• They tend to pack the transactions with higher transaction fee

• What’s the problem here?

• Suppose we have an app. The winner is the last player who sends

the money to the app. An attacker could send multiple

transactions with high gas price to bribe the miner and prevent it

from packing transactions from other game players – win the

game

Smart Contract

Smart contracts are widely used

• Voting systems

• Cryptocurrencies

• Gaming

• Lottery

• …

EVM: Ethereum Virtual Machine

• “Accounts” have code and storage

• Send each other “messages” (transactions)

• “Contracts” receive messages -> run code (function call)

• Stack-based language: 56 opcodes, arithmetic, boolean, control

flow, crypto

• New: gas, create, suicide

Ethereum Virtual Machine

• Stack based: Rather than relying on registers, any operation

will be entirely contained within the stack. Operands, operators,

and function calls all get placed on the stack, and the EVM

understands how act on that data and make the smart contract

execute.

• Example: if we want to perform 2 + 2, then we could just as easily

represent this as 2 2 +, which is Postfix

2

2

+

stack

How to Program a smart contract

solc --bin SimpleStorage.sol

solc --bin-runtime SimpleStorage.sol

Contract bytecode

Runtime bytecode

Bytecode vs. Runtime Bytecode

• The contract bytecode is the bytecode of what will actually end up

sitting on the blockchain PLUS the bytecode needed for the

transaction of placing that bytecode on the blockchain, and

initializing the smart contract (running the constructor).

• The runtime bytecode, on the other hand, is just the bytecode that

ends up sitting on the blockchain. This does not include the bytecode

needed to initialize the contract and place it on the blockchain.

Bytecode vs. Runtime Bytecode

• https://ethervm.io/decompile

Deploy a Contract on Ethereum Network

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Deploy Smart Contracts

• In the transaction, the ‘to’ field is left empty (‘0x0’ is shown).

• In the input, we only place the bytecode. It is because our contract does

not have a constructor that requires arguments. If arguments are needed in

constructor, they are encoded according to the type and appended after

the bytecode.

• The Contract address is found in Transaction Receipt.

• The default Gas Limit (gas) is 90,000 gas. If you do not specify the gas, you

will encounter “out of gas” as it takes more than 90,000 gas for processing

this transaction. Therefore we specify 200,000 gas for this transaction.

• It turns out the transaction processing only takes 112,213 gas. The remain

is returned to transaction sender.

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Execute a Function on a Deployed Contract

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Function Selectors: which function to call

• In the Solidity code above, two functions are

defined: get() and set(uint).

• When contract code is compiled, these functions are processed

through a hashing function (keccak256, implemented as sha3 in

web3 library) and the first four bytes are taken out as the function

selectors.

• 0x6d4ce63c for get()

• 0x60fe47b1 for set(uint256)

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Execute a Function on a Deployed Contract

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Security of Smart Contracts in Real World

https://dasp.co/

https://dasp.co/

Ethereum (In)security

Credits: Anastasia Mavridou and Aron Laszka

Ethereum (In)security

Zhen Cheng, Xinrui Hou, Runhuai Li, Yajin Zhou, Xiapu Luo, Jinku Li, Kui Ren

"Towards a First Step to Understand the Cryptocurrency Stealing Attack on Ethereum."

RAID 2019

• We studied the cryptocurrency stealing attack in a period of six

months, due to a misconfiguration of online Ethereum nodes

• During a six-month period, our system captured 308.66 million

RPC requests from 1,072 distinct IP addresses

• The lower bound of attackers’ profit is around 1 million USD and

the upper bound is around 20 million USD (based on the attacks

we captured)

Smart Contract (In)security

• Smart contracts are riddled with bugs and security vulnerabilities

• A recent automated analysis of 19,336 Ethereum contracts

• 8,333 contracts suffer from at least one security issue

Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.

"Making smart contracts smarter." ACM CCS, 2016

Credits: Anastasia Mavridou and Aron Laszka

Smart Contract (In)security

Nikolic, Ivica, Aashish KolluriChu, Ilya Sergey, Prateek Saxena, and Aquinas Hobor.

“Finding the Greedy, Prodigal, and Suicidal Contracts at Scale.”arXiv:1802.06038, 2018

Credits: Anastasia Mavridou and Aron Laszka

Why the Security of Smart Contracts Matters

• It causes financial loss – real money

• Value held by Ethereum contracts is 12,205,706 ETH or $10B

• Smart contract bugs cannot be patched

• Once a contract is deployed, its code cannot be changed

• Blockchain transactions cannot be rolled back

• Once a malicious transaction is recorded it cannot be removed

• Well… actually… It can be rolled back with a hard fork of the

blockchain

Credits: Anastasia Mavridou and Aron Laszka

Attacks

• The DAO Attack

• Bad design of the Ethereum network

• The overflow attack

• Bad security practice of developers

• The short address attack

• Bug of the Ethereum VM to handle crafted inputs

The DAO Attack (Simplified Version)

https://dasp.co/

https://dasp.co/

The DAO Attack (Simplified Version)

• The hacker exploited a bug in the code of the DAO and stole more or

less $50 million worth of ether

• Case the split of Ethereum: ETH and ETC

• Hard fork to fix the bug and discard transactions

Credits: https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470

The DAO Attack (Simplified Version)

• Basic concepts

• Two types of accounts: EOA account, smart contract account

• EOA account is owned by person, smart contract account is

owned by code

• Transactions could be used to transfer the Ether or invoke a

function of a smart contract

• External transactions: transactions from EOA account

• Internal transaction: Smart contract can also call functions inside

another smart contract

The DAO Attack (Simplified Version)

• Basic concepts: Fallback function

• A contract can have one anonymous function, known as well as

the fallback function. This function does not take any arguments

and it is triggered in three cases

• a. If none of the functions of the call to the contract match any

of the functions in the called contract

• b. If no data was supplied – no function signatures are given

• c. When the contract receives Ether without extra data

The DAO Attack (Simplified Version)

• The DAO contract raised

about $150M before being

attacked

• An attacker managed to put

about $60M under his

control

The DAO Attack (Simplified Version)

• To perform the attack:

• Deploy a contract shown

right

• Donate some Ether for

Mallory and invoke the

withdraw() function

• Call the fallback

function of Mallory

• Mallory’s fallback

function invokes

withdraw again

Fallback function

The DAO Attack (Simplified Version)

• Looping until:

• exception

• Out of gas

• Stack limit is reached

• Balance of the DAO is less

than the credit of Mallory

• The results of the execution

will not be revoked, even in

the case of an exception

Why This Attack Could Happen

• Implicit function call causes problems

• It’s always a bad security practice to make something happen

implicitly

• Programmers may not realize that since they are not as smart

as one may think

Overflow

Background

What’s the problem

Pass a big value _amount!

A Real Example: SMT Token

_feeSmt = 8fff

value = 7001

__feeSmt + value = 0

attacker

Short Address Attack

Overview

• Short address attacks are a side-effect of the EVM itself accepting

incorrectly padded arguments. Attackers can exploit this by using

specially-crafted addresses to make poorly coded clients encode

arguments incorrectly before including them in transactions

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

First try

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

Second try

EVM will pad zero to the value

512 = 2<<8

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

How to Secure Smart Contracts

• From the developer’s perspective

• Understand the security model of smart contracts

• Leverage security tools to audit the code

• Deploy a new update mechanism through proxy contract

• From the community

• Educate developers

• Develop better tools for developers

• Remove the bad design from the client (maybe too late)

Thanks!

