52

ZHEJIANG UNIVERSITY

Introduction to Smart Contract Security

Yajin Zhou (http://yajin.orq)

Zhejiang University

Credits: Campbell R. Harvey, Ashwin Ramachandran, Brent Xu, Anastasia Mavridou, Aron Laszka, KC Tam

http://yajin.org

About Me

Professor at Zhejiang University since 2018, earned my PhD from NC
State (2015)

Published 10 papers in top 4 system security conferences (USENIX
Security, CCS, NDSS and Oakland), with 5700+ citations (Google
Scholar).

Four best paper awards, including IEEE EuroS&P 2019

|dentity real-world threats (how to hack) and build practical solutions
(how to defend), in the context of software security of embedded
systems (firmware)

Also interested in emerging threats, e.g., security of smart contracts

http://yajin.org

http://yajin.org/

Agenda

Ethereum
Accounts
Transactions
Smart contracts
EVM
How to deploy a smart contract
How to invoke functions inside a smart contract

Security of smart contracts in real world

-thereum

-thereum

Build unstoppable applications

Ethereum is a decentralized platform that runs smart contracts :
applications that run exactly as programmed without any possibility of
downtime, censorship, fraud or third-party interference.

These apps run on a custom built blockchain, an enormously powerful
shared global infrastructure that can move value around and represent

e 'I' h e r e u m the ownership of property.
This enables developers to create markets, store registries of debts or
BLOCKCHAIN APP PLATFORM promises, move funds in accordance with instructions given long in the past

(like a will or a futures contract) and many other things that have not been
invented yet, all without a middleman or counterparty risk.

y
|t S more th an The project was bootstrapped via an ether presale in August 2014 by fans all
around the world. It is developed by the Ethereum Found , @ Swiss non-

C ryptOC urren Cy] profit, with contributions from great minds across the globe.

Pic: https://www.ethereum.org/

Basic Concepts

Ethereum node

Ethereum
Accounts (Two types) and Wallets
Transactions

Smart Contracts

Solidity: Language used for smart contract development

~thereum Node

Full node: Validate all transactions and new blocks
Operate in a P2P fashion
Each contains a copy of the entire Blockchain
Light clients - store only block headers
Provide easy verification through tree data structure
Don’t execute transactions, used primarily for balance validation

Implemented in a variety of languages (Go, Rust, etc.)

Accounts and Wallets

Accounts:
Two Kinds:
External Owned Accounts - (EOA): owned by person
Contract Accounts: owned by code
Allow for interaction with the blockchain
Wallets:
A set of one or more external accounts

Used to store/transfer Ether

Accounts and Wallets

External Account (EOA, Valid Ethereum Address)
Consist of a public/private key-pair
Can have a balance

Has an associated nonce (amount of transactions sent from the
account) and a balance

codeHash - Hash of associated account code, i.e. a computer
program for a smart contract (hash of an empty string for external
accounts, EOAS)

Accounts and Wallets

Contract Account: Ethereum account that can store and
execute code

Has an associated nonce and balance
codeHash - hash of associated account code

storageRoot contains Merkle tree of associated storage data

ORI ssa———— s
account account

n. <code>
“wode»

T |
|

-xamples

@ Etherscan All Filters v Search by Address / Txhash / Block / Token / Ens
Eth: $180.69 (+7.93%) Home Blockchain « Tokens v Resources ~ More « @ Sign In K
B Address 0x323D1C346277607a316EbdFb46a1E280181D964 © =

Sponsored: % CodeFund provides funding to open source blockchain projects through non-tracking ads Do you qualify?

Overview More Info v

Balance: 38.951323702747088771 Ether Transactions: 124,122 txns

Ether Value: $7,038.11 (@ $180.69/ETH)

Token: $0.00 & v |3
@ Ethersca,n, All Filters v Search by Address / Txhash / Block / Token / Ens n
Eth: $180.61 (+7.88%) Home Blockchain v Tokens v Resources v More v O Sign In >

@ Contract 0x8562c38485B1E8cCd82E44F89823dA76C98eb0Ab @

oo
c

Earn Interest + Crypto Loan ~

Etherscan - Sponsored slots available. Book your slot here!

Contract Overview More Info v
Balance: 0 Ether Transactions: 211,769 txns
Ether Value: $0 Contract Creator: 0x0075fd4a7e9a268...at txn O0x6e653115cacb3b...

Token: $0.00 £} v

rm
[

Transactions

A request to modity the state of the blockchain

Can run code (contracts) which changes global state
(storage)

Launched by an EOA (external transaction) or Contract account
(internal transaction)

Types
Fund transfer between EOASs
Deploy a contract on Ethereum network (discuss later)

Execute a function on a deployed contract (discuss later)

Transactions: Fund Transfer Between EOA

10 ethers

—(‘ Transaction

\—

< »

Ethereum Network /
S

From Fund sender, an EOA (20-byte address)
To Fund recipient, another EOA (20-byte address)
Value Amount, in weis

Data / Input Empty

Gas Limit Larger enough for an ether transfer transaction

Gas Price To be determined by transaction initiator

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Transactions: Fund Transfer Between EOA

- Areal example

> web3.fromWei(eth.getBalance(eth.accounts[0]))
> web3.fromWei(eth.getBalance(eth.accounts[1]))

> eth.sendTransaction({

from: eth.accounts[Q],

to: eth.accounts[1],

value: web3.toWe1(10)

1)
"Ox497913c1781f65613035b22340fcf5bc59c7ed474bta3cle798codf fbeda9dasSb”
>

> web3.fromWei(eth.getBalance(eth.accounts[0]))

> web3.fromWei(eth.getBalance(eth.accounts[1]))

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Smart Contracts

Function like an external account
Hold funds
Can interact with other accounts and smart contracts
Contain code

Can be called through transactions

Code Execution

Every Ethereum node contains a virtual machine (similar to Java)
Called the Ethereum Virtual Machine (EVM)
Compiles code from high-level language to bytecode

Executes smart contract code and changes (and broadcasts)
global states

Every full-node on the blockchain processes every transaction
and stores the entire state

What's the problem here: consumes resources but gets nothing!

(Gas

Halting problem (infinite loop - consume resources) — reason for
Gas

Problem: Cannot tell whether or not a program will run infinitely
from compiled code - why?

Solution: charge fee per computational step to limit infinite loops
and stop flawed code from executing

Every transaction needs to specify an estimate of the amount of
gas it will spend - gas Limit

Essentially a measure of how much one is willing to spend on a
transaction, even if buggy

(Gas Cost

Gas Price: current market price of a unit of Gas (in Wel)
Check gas price here: https://ethgasstation.info/
Is always set before a transaction by user
Gas Limit: maximum amount of Gas user is willing to spend
Gas Cost (used when sending transactions) is calculated by gas used*gasPrice
Gas used
normal transaction - 21,000

smart contracts: depends on resources consumed - instructions executed and
storage used

What if gas limit < gas cost?

(Gas Cost

Unit Wei
Wei 1
Kwei / ada / femtotether 1,000
Mwei / babbage / picoether 1,000,000
Gwei / shannon / nanoether / nano 1,000,000,000
Szabo / microether / micro 1,000,000,000,000
Finney / milliether / milli 1,000,000,000,000,000
Ether 1,000,000,000,000,000,000

Quick quiz: who will get the transaction fee?

A Normal Transaction

Gas Limit: Maximum amount of gas that a user will pay

Comments for this transaction. The default amount for a standard

Transaction Information

ETH transfer 1s 21,000 gas

TxHash: 0x08b36b7546912a6f0608cb983bd23f2eec045a40f6ead 1165dd48e8046af1514
TxReceipt Status: Success
Gas Used by Txn: Actual amount of gas used to
Block Height: 5082447 (23 block confirmations)
TimeStamp: 4 mins ago (Feb-13-2018 10:58:24 AM +UTC) |execute the transaction. Since this 1s a standard
From: Oxdc7693bd416f462787 1c82b4fc030e42238921b3]
transfer, the gas used 1s also 21,000
To: 0x27bd240886d755e1d273a21d2f00d8598¢c1c572%
Value: 1.01682595274441134 Ether ($846.17)

Gas Limit: 21000

G Usad By Tin: Gas Price: Amount of ETH a user 1s prepared to pay for

Gagfitice: $.00000900 Ether (6 Cwel) each unit of gas. The user chose to pay 8 Gwei for every

Actual Tx Cost/Fee: 0.000168 Ether ($0.14)

gas unit, which is considered a “high priority” transaction

Cumulative Gas Used: 866792

Nonce: 0 and would be executed very fast.

~th Gas Station

Estimates over last 1,500 blocks - Last update: Block 7528466

Recommended Gas Prices in Gwei

fast (<2m)

standard (<5m) safe low (<30m)
$0.031/transfer

$0.015/transfer $0.008/transfer

Gas-Time-Price Estimator: For transactions sent at block: 7528466

Adjust confirmation time

Avg Time (min) 0.34 Gas Used* 21000

95% Time (min) 0.85 Avg Time (blocks) 2
Gas Price (Gwel)" 4 95% Time (blocks) 5
Tx Fee (Fiat) $0.015 Tx Fee (ETH) 0.00008

Transaction Count by Gas Price

Confirmation Time by Gas Price

60| 1.4!
50 | %‘ 1.2 |
g = 1.0 |
S 4 | E
B £ 08
3 S ‘
E 30 | © 06|
S 20 | 2 04
) 10 = 02 | l
o,‘ 3 = I - = 5l % il
o M- .— N RO A DD PN P
/1

<1 1=4 4<20

2050 >50

Gas price category

Gas price (gwel)

Miner

Miner is responsible for creating new blocks and packing
transactions

They are rewarded by the network, and transaction fee
They tend to pack the transactions with higher transaction fee
What'’s the problem here?

Suppose we have an app. The winner is the last player who sends
the money to the app. An attacker could send multiple
transactions with high gas price to bribe the miner and prevent it
from packing transactions from other game players — win the
game

Smart Contract

Smart contracts are widely used

Voting systems
Cryptocurrencies
Gaming

Lottery

http://www.ricardoaraujo.net/img/graph.png

-VM: Ethereum Virtual Machine

“Accounts” have code and storage
Send each other “messages” (transactions)
“Contracts” receive messages -> run code (function call)

Stack-based language: 56 opcodes, arithmetic, boolean, control
flow, crypto

New: gas, create, suicide

-thereum Virtual Machine

Stack based: Rather than relying on registers, any operation
will be entirely contained within the stack. Operands, operators,
and function calls all get placed on the stack, and the EVM
understands how act on that data and make the smart contract
execute.

Example: if we want to perform 2 + 2, then we could just as easily
represent this as 2 2 +, which is Postfix

N

stack

How to Program a smart contract

pragma solidity 70.4.0;
contract SimpleStorage |
uint storedData;

function set(uint x) public {
storedData = x;

}

function get() constant public returns (uint retVal) {
return storedData;

}

Contract bytecode

Runtime bytecode

Bytecode vs. Runtime Bytecode

The contract bytecode is the bytecode of what will actually end up
sitting on the blockchain PLUS the bytecode needed for the

transaction of placing that bytecode on the blockch

ain, and

initializing the smart contract (running the constructor).

The runtime bytecode, on the other hand, is just t
ends up sitting on the blockchain. This does not inc
needed to initialize the contract and place it on the

ne bytecode that
ude the bytecode
plockchain.

Bytecode vs. Runtime Bytecode

Bytecode

""608060405234801561001057600080Ffd5b5060dT8061001T60003960001300/60
0604052600436106049576000357c010000000000000000000000000000000000
000000000000000000000900463Fffffffff16806360fe47b114604e5780636d4cC
63¢c146078575b600080fd5b348015605957600080Tfd5b50607660048036038101
0808035906020019092919050505060a0565b005b348015608357600080Fd5b50
08a60aab65b6040518082815260200191505060405180910390135b8060008190
55050565b600080549050905600a165627a7a7230582080122bb351e6e2c021f1
56c0c5933087e762ea6e7a3360b902b39cbed5a38110029"

Runtime Bytecode

6080604052600436106049576000357c010000000000000000000000000000000
000000000000000000000000900463fFfffffff16806360Te47b114604e5780636
4ce63c146078575b6000801fd5b348015605957600080Td5b506076600480360381
0190808035906020019092919050505060a0565b005b348015608357600080Fd5h
50608a60aa565b6040518082815260200191505060405180910390135b80600081
90555050565b600080549050905600a2165627a7a7230582080122bb351e6e2c021
f1c56c0c5933087e762eabe7a3360b902b39cbed5a38110029

https://ethervm.io/decompile

Decompilation

This might be constructor bytecode - to get at the deployed contract, go back and remove

contract Contract {
function main() {
memory|[0x40:0x60] = 0x80;
var var(0 = msg.value;

£

if (var0) { revert(memory[0x00:0x00]); }

memory[0x00:0xdf] = code[0x1f:0xfe];
return memory| uUxol:0xdr|;

Deploy a Contract on Ethereum Network

EOA
; { Transaction
aEpley panEa From Contract deployer, an EOA (20-byte address)
___________________ To Empty
Contract Value Amount, in weis (if required by contract
(Account) | constructor)
e ' Data / Input Bytecode, plus any encoded arguments if
Ethereum Network required by constructor

Gas Limit Larger enough for contract deployment
Gas Price To be determined by transaction initiator

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

> web3.fromWei(eth.getBalance(eth.accounts[@]))

> var bytecode = "608060405234801561001057600080fd5b5060df8061001 60003960003
006080604052600436106049576000357c01000000000000000000A00A0AAVAVAAAVAAVAVAAMA
000000000000V20V463ffffffff16806360fe47b114604e5780636d4ce63¢c146078575b600080
fd5b348015605957600080f d5b5060766004803603810190808035906020019092919050505060
a@565b005b348015608357600080fd5b50608a60aa565b60405180828152602001915050604051
809103901 35b8060008190555050565b600A0805490509056000165627a7a7230582080122bb351
ebelc021f1c56c0c5933087e762eabe7a3360b902b39cbed5a38110029"
undefined
>
> eth.sendTransaction({

from: eth.accounts[Q],

data: bytecode,

gas:. 200000

)
"Oxcl4c38a447td59abbeaeddf47bd7c151t3125446596675f9ea8741e81179890d9"

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

> eth.getTransaction("@xcl4c38a447fd59abbeaeddf47bd7cl15f3125446596675f9%9ea8741e
81f79890d9")

{

blockHash: "0Oxe8aled7403baa®39f966a’l22b442cedbf5adbd28c9802feab806e57d75c8ce4
cf”,

blockNumber: 1,

from: "Ox747e967cl24abec@2b7243e3287cc5ec0f4534a89",

gas: :

gasPrice: A

hash: "0xcl4c38a447fd59abbeaed4df47bd7c15f3125446596675f9ea8741e81179890d9" ,

1nput: "Ox608060405234801561001057600080fd5b5060df8061001f6000396000f 3006080
004052600436106049576000357c01000000000000000000000000000V0AV0VAVVRVVVVAVAVA
0000000043 f I ff16806360fe47b114604e5780636d4ce63¢c146078575b60008ATdS5b34
8015605957600080fd5b5060766004803603810190808035906020019092919050505060a0565b
P05b348015608357600080fd5b50608a60aa565b60405180828152602001915050604051809103
90135b8060008190555050565b600A805490509056000165627a7a7230582080122bb351ebelcd
21t1c56c0c5933087e762eab6e7a3360b902b39cbed5a38110029"

nonce: 0,

to: "Ox0",

transactionIndex: 0,

value:

s://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

> eth.getTransactionReceipt("0Oxcl4c38a447fd59abbeaeddf47bd7c15f312544659667519
ea8741e81f79890d9")

{
blockHash: "Oxe8aled7403baa@39f966a22b442cedbf5adbd28c9802feab80be57d75c8ce4

cf”,
blockNumber: 1,
contractAddress: "0xa8e28f1a7031968fb830e5a70c4b246b0@7f64d2a" ,
cumulativeGasUsed: ,
gasUsed: ;

logs: L1,

logsBloom: "@x0000000000000000000000000000000000000AVARYAVAVANVYAVAAYAVAVAAD
P0000VVVVVVRVVVVVVVRVVVVVVRVVVVAVVRVVAVRVAVVVRVAVVVRVVAVRVRVYVVVAVRVRRAVAVVVAY
L L,
00000000V0VRVRVRVVRVRVVRVAVRVRVVRVAVRVVAVAVAVRVAVAVAVRRVRVAVAVRVVAVAVAVRRAVAVAVAA
000000000000VVVVRVRVVRVAVRVRYVAVAVAVRAVAVARVAVAVAVRARVAVAVARRAVAVAVRAAVAVAVAA
00000VVVVVVVVVRVVRVVRVRVRVVVVAVRVRVVAVRVAVVVAVAVVVRVRVAVRVRVVAVAVRVRAVAVVVAA
000000000000000V0VVVRVVVVAVAVRVVVVAVRYVVYVAVAVRVRRRVAVAVVAVANR" ,

status: "Ox1",

transactionHash: "O@xcl4c38a447fd59abbeae4df47bd7c15f31254465966751f9%9ea8741e81
£79890d9",

transactionIndex:

}

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Deploy Smart Contracts

In the transaction, the ‘to’ field is left empty (‘0x0’ is shown).

In the Input, we only place the bytecode. It is because our contract does
not have a constructor that requires arguments. If arguments are needed in
constructor, they are encoded according to the type and appended after
the bytecode.

The Contract address is found in Transaction Receipt.

The default Gas Limit (gas) is 90,000 gas. If you do not specify the gas, you
will encounter “out of gas” as it takes more than 90,000 gas for processing
this transaction. Therefore we specity 200,000 gas for this transaction.

It turns out the transaction processing only takes 112,213 gas. The remain
IS returned to transaction sender.

https://medium.com/@Xkctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

execﬁte\{unction

https://medium.com/@Xkctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Function Selectors: which function to call

In the Solidity code above, two functions are
defined: get() and set(uint).

When contract code is compiled, these functions are processed
through a hashing function (keccak256, implemented as sha3 in
web3 library) and the first four bytes are taken out as the function
selectors.

- 0Ox6d4ce63c for get()

- 0x60fed7b1l for set(uint256)

> web3.sha3('get()"')
"Oxbd4ceb3caab56000744ac797760500da39ebd16e8240936b51153368ef9ele@1t"”

> web3.sha3('set(uint256)")
"Oxo00fed47bloed402aaebbca@3d2bfc51478ee897¢c26a1158669c7058d512489814"

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

—xecute a Function on a Deployed Contract

From Function executor, an EOA (20-byte address)

To Contract Address (20-byte address)

Value Amount, in weis (if needed in contract function)

Data / Input Function selector, plus any encoded arguments
required by function

Gas Limit Larger enough for contract function execution

Gas Price To be determined by transaction initiator

> var newValue = "000000000000000000000000000000000V0VVVVVVVVVVVVVVVVVVVVVVYDD

QOFF"

undefined

> eth.sendTransaction({

from: eth.accounts[Q],

to: contractAddress,

data:

"Oxo0fed47bl" + newValue

"@x221bad932cd4c6135b46c926eda9f1d234a6fd8def5ad89fd5c7b549a7be8830"

>

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

https://medium.com/@kctheservant/transactions-in-ethereum-e85a73068f74

Security of Smart Contracts in Real World

https://dasp.co/

https://dasp.co/

“thereum (In)security

Il freeCodeCamp(d)

JATA LEARN TO CODE FO

BUSINESS
INSIDER

Someone deleted some code in a popular
cryptocurrency wallet — and as much as
$280 million in ether is locked up

Becky Peterson () Nov, 7,2017, 629 PM A 145211

4 \WEYR}4 D] SUBSCRIBE

LONIACK JUST =
SHOWED THAT THE DAO
WA ALL 00 HUMAN

20 MIL

KLIN
- |
ENTERPRISE v ¢ P L'\ $

EE Q Home News Sport Weather Shop More o |

NEWS

A hacker stole $31M of Technology
Ether—how it happened,
and what it means

for Ethereum

Hack attack drains start-up investment func

e —

Credits: Anastasia Mavridou and Aron Laszka

“thereum (In)security

We studied the cryptocurrency stealing attack in a period of six
months, due to a misconfiguration of online Ethereum nodes

During a six-month period, our system captured 308.66 million
RPC requests from 1,072 distinct [P addresses

The lower bound of attackers’ profit is around 1 million USD and
the upper bound is around 20 million USD (based on the attacks

we captured)

Zhen Cheng, Xinrui Hou, Runhuai Li, Yajin Zhou, Xiapu Luo, Jinku Li, Kui Ren
"Towards a First Step to Understand the Cryptocurrency Stealing Attack on Ethereum."
RAID 2019

Smart Contract (In)security

- Smart contracts are riddled with bugs and security vulnerabilities
- A recent automated analysis of 19,336 Ethereum contracts

.- 8,333 contracts suffer from at least one security issue

Luu, Loi, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
"Making smart contracts smarter." ACM CCS, 2016

Credits: Anastasia Mavridou and Aron Laszka

Smart Contract (In)security

TECHNOLOGY & SECURITY

Millions of Dollars In
Ethereum Are
Vulnerable to Hackers
Right Now

Researchers discovered 34,200 buggy smart
contracts on Ethereum.

N

Contracts Are Vulnerable to Bugs

Nikolic, lvica, Aashish KolluriChu, llya Sergey, Prateek Saxena, and Aquinas Hobor.
“Finding the Greedy, Prodigal, and Suicidal Contracts at Scale.”arXiv:1802.06038, 2018

Credits: Anastasia Mavridou and Aron Laszka

Why the Security of Smart Contracts Matters

't causes financial loss — real money
Value held by Ethereum contracts is 12,205,706 ETH or $10B
Smart contract bugs cannot be patched

Once a contract is deployed, its code cannot be changed
Blockchain transactions cannot be rolled back

Once a malicious transaction is recorded it cannot be removed

Well... actually... It can be rolled back with a hard fork of the
blockchain

Credits: Anastasia Mavridou and Aron Laszka

Attacks

The DAO Attack

Bad design of the Ethereum network
The overflow attack

Bad security practice of developers
The short address attack

Bug of the Ethereum VM to handle crafted inputs

The DAO Attack (Simplified Version)

https://dasp.co/

https://dasp.co/

The DAO Attack (Simplified Version)

The hacker exploited a bug in the code of the DAO and stole more or
less $50 million worth of ether

Case the split of Ethereum: ETH and ETC

Hard fork to fix the bug and discard transactions

Credits: https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470

https://medium.com/@MyPaoG/explaining-the-dao-exploit-for-beginners-in-solidity-80ee84f0d470

The DAO Attack (Simplified Version)

Basic concepts
Two types of accounts: EOA account, smart contract account

EOA account is owned by person, smart contract account is
owned by code

Transactions could be used to transfer the Ether or invoke a
function of a smart contract

External transactions: transactions from EOA account

Internal transaction: Smart contract can also call functions inside
another smart contract

The DAO Attack (Simplified Version)

Basic concepts: Fallback function

A contract can have one anonymous function, known as well as
the fallback function. This function does not take any arguments
and it Is triggered in three cases

a. If none of the functions of the call to the contract match any
of the functions in the called contract

b. If no data was supplied — no function signatures are given

c. When the contract receives Ether without extra data

The

DAQO Attack (Simplified Version)

The DAO contract raised
about $150M before being
attacked

An attacker managed to put
about $60M under his
control

ontract SimpleDAQ {
mapping (address =» uint) public credit;
function donate(address to){credit[to] += msg.value;}
nction queryCredit(address to) returns (uint){
return credit[to];
}
function withdraw(uint amount) {
if (credit[msg.sender]>= amount) {
nsq.sender.call.value(amount)();
credit[msg. sender]-=amount;

The DAO Attack (Simplified Version)

To perform the attack:

Deploy a contract shown SimpleDAO { dao - Sini;‘:{eDAO(),
”ght aadress owner;
Function Mallory(){owner = msg.sender; }
Donate some Ether for function() { dao.withdraw(dao.queryCredit(this)); }
Mallory and invoke the Functign getlackpot()] owner.send(this.balance);]
withdraw() function }
Call the fallback

function of Mallory

Mallory’s fallback Fallback function
function invokes

withdraw again

The DAO Attack (Simplified Version)

Looping until:
Mallory's
exception afback
Out of gas

Stack limit i1s reached

Balance of the DAQO Is less
than the credit of Mallory

The results of the execution
will not be revoked, even In

_ Mallory's
the case of an exception fallback

Why This Attack Could Happen

Implicit function call causes problems

It's always a bad security practice to make something happen
implicitly

Programmers may not realize that since they are not as smart
as one may think

Overflow

Background

pragma solidity 70.4.10;

contract Test{

function test() returns(uint8){
uint8 a = 255;
uint8 b = 1;

return a+b;// return 0

}

function test_1() returns(uint8){
uint8 a = 0;
uint8 b = 1;

return a-b;// return 255
}
}

What's the problem

function withdraw(uint _amount) {
require(balances[msg.sender] - _amount > 0);
msg.sender.transfer(_amount);

balances [msg.sender] —-= _amount;

Pass a big value _amount!

A Real Example: SMT Token

function transferProxy(address _from, address _to, uint256 _value, uint256 _feeSmt,
uint8 _v,bytes32 _r, bytes32 _s) public transferAllowed(_from) returns (bool){

if(balances[_from] < _feeSmt + _value) revert();
uint256 nonce = nonces|[from];

bytes32 h = keccak256(_from,_to,_value,_feeSmt,nonce);
if(_from != ecrecover(h,_v,_r,_s)) revert();

if(balances[_to] + _value < balances[_to]

| | balances[msg.sender] + _feeSmt < balances[msg.sender]) revert();
balances[to] += value;
Transfer(_from, _to, _value);

balances[msg.sender] += _feeSmt;
Transfer(_from, msg.sender, _feeSmt);

balances[from] —= value + feeSmt;
nonces[_from] = nonce + 1;
return true;

_feeSmt = 8fffftfftfffrfferferrferferrerreerferrerreerrerrereerreereereee
value = 7001

__feeSmt + value =0

From:

To:

Tokens Transfered:
{2 ERC-20 Transfers found)

Value:

Transaction Fee:

Gas Limit:

Gas Used by Transaction:

Gas Price:

Nonce FPosition

Input Data:

Oxd6a09bdb29e1eafad2a30373c44b0%e2e2e0651e [0
Contract 0x55f939854311c9304077687a35a1ba103dc1e081 (SmartMesh_TokenSale) & (0

» From Oxdf31a499a5a8358... To Oxdf31a49%a5a8358...For
65,133,050,195,990,400,000,000,000,000,000,000,000,000,000,000,000,000,000,000.891004451135422463
($939,254,895,501,666,000,000,000,000,000,000,000,000,000,000,000,000,000,000.00) AN ERC-20 (SMT)

» From Oxdf31a499a5a8358... To O0xd6a09bdb29e1ea... For
50,659,039,041,325,800,000,000,000,000,000,000,000,000,000,000,000,000,000,000.693003461994217473
($730,531,585,390,184,000,000,000,000,000,000,000,000,000,000,000,000,000,000.00) AN ERC-20 (SMT)

0 Ether ($0.00)
0.00109226 Ether ($0.19)
150,000
109,226 (72.82%)

0.00000001 Ether (10 Gwei)

1 10

TFUNCTION: TransSTErProxXylauuress _Trom, aouress _T0, UINTZ56 _Value, UINTZ56 _TEESmT, UINTts _V,
bytes32 _r, bytes32 _s)

MethodID: @xeb5062d45
[0]: 000000000000000000000000dTF31a499a5a8358b7456411e2214b31bb34eb46f

S HEN000000000000000000000000d f31a499a5a8358b7456411e2214b31bb34ebd6f

[21: BEFFFFFFFreffffffrefffffrfffrfrffrrrrifrrrfffffffrffffffffifffee

[3]: 7001
[4]: 001b
[5]1: 87790587c256045860b8fe624e5807a658424fad18c2348460e40ecf10fc8799
[6]: 6c879bleBaBab2f23b47aa57a3369d416dd783966bd1dda®394c04163a98d8d8

View Input As + & Decodelnput Data

% Address 0xDF31A499A5A8358b74564f1e2214B31bB34Eb46F © = gitqcker

Feature Tip: Enable advanced mode, change languages and more. Customize your experience now!

Overview More Info
Balance: 0.000022365625 Ether Transactions:
Ether Value: Less Than $0.01 (@ $178.44/ETH)

Token: $935,842,164,663,682,... € v | =3

Search for Token Name

Transactions Erc20 Toke

> ERC-20 Tokens (3)

I= Latest 14 txns
AN 0x55f93985431fc93040..

65,133,050,195,990,400,0... $930,042.1 64’663:682

| 44

()
=V.uU

SMT

TxHash _—--— To
0x43ee79e379e7b78d8...

Oxea37879343f720d... 65,133,050,195,990,400,0... UGT 99a5a8358... ouT Oxd6a09bdt
0x02357f06600f5111dc...

0xf6356e90e15ef10... 1a13d3bf6... IN Oxdf31a499.

65,133,050,195,990,400,0... UGT
e —————— ————— =]

Short Address Attack

Overview

Short address attacks are a side-effect of the EVM itselt accepting
iIncorrectly padded arguments. Attackers can exploit this by using
specially-crafted addresses to make poorly coded clients encode

arguments incorrectly before including them in transactions

https://ericrafaloff.com/analyzing-the-erc20-short-address-attac

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

pragma solidity "0.4.11;

contract MyToken {
mapping (address => uint) balances;

event Transfer (address indexed from, address indexed to, uint256 _value);

function MyToken() {
balances[tx.origin] = 10000;

}

function sendCoin(address to, uint amount) returns(bool sufficient) {
if (bmme_rrh&'lm')_t@turn false;
balances[msg.sender] -= amount;
balances[to] += amount;
Transfer (msg.sender, to, amount);
return true;

}

function getBalance(address addr) constant returns(uint) {
return balances[addr];
}

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

First try

0x90b98all

00000000000000000000000062bec9abe373123b9b635b75608£94eb8644163e
00000000O0O0OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0O0OOOO0O0O0O0OOO0O0O0O0O0O0O0O0Z

Where:

« 0x90b98a11 is the method ID (4 bytes), which is the Keccak (SHA-3) hash of the method signature.

« 00000000000000000000000062bec9abeld73123b9b635b75608f94eb8644163¢ is the “to” address (20 bytes),
padded to 32 bytes.

« 0002 is the “amount” unsigned
integer (non-fixed, 1 byte), padded to 32 bytes.

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

Second try

Let us suppose that we want to send some coins again to 0x62bec9abe373123b9b635b75608£94eb8644163e.
However, this time we decide to drop the last byte in the address which is 3e. We end up with the following input
data:

0x90b98all
00000000000000000000000062bec9abe373123b9b635b75608£94eb86441600
00000000000O0OOOOOOOOOOOOOOOOOOOOOOOO0O0O0O0O0O0O0OOOOO0O0O0O0O0O0O0O00000002

A AN

Note the missing byte

EVM will pad zero to the value

Event Name : Transfer

Return Values: from: 0x58bad47711113aea5bc5del2bcebdd7aae55cce5
_to: 0x62bec9abe373123b9b635b75608£94eb864416
_value: 512

512 = 2<<8

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

https://ericrafaloff.com/analyzing-the-erc20-short-address-attack/

How to Secure Smart Contracts

From the developer’'s perspective
Understand the security model of smart contracts
Leverage security tools to audit the code
Deploy a new update mechanism through proxy contract
From the community
Educate developers
Develop better tools for developers

Remove the bad design from the client (maybe too late)

Thanks!

